Rotate each shape. Answer as the new coordinates.

$\theta=$ Angle of Rotation

Rotation Formula

$\mathrm{x} 1=\mathrm{x} \times \cos (\theta)-\mathrm{y} \times \sin (\theta)$
$y 1=x \times \sin (\theta)+y \times \cos (\theta)$
In the example to the right the shape is at coordinates $(1,4)$.
Lets find the coordinates if we rotated the shape 60°.

1. $\mathrm{x} 1=1 \times \cos (60)-4 \times \sin (60)$
$y 1=1 \times \sin (60)+4 \times \cos (60)$
2. $\mathrm{x} 1=1 \times 0.5-4 \times 0.87$
$y 1=1 \times 0.87+4 \times 0.5$
3. $x 1=0.5-3.48$
$\mathrm{y} 1=0.87+2$
4. $x 1=-2.98$
$\mathrm{y} 1=2.87$
5. Looking at shape, we can see that rotated 60° it is at $(-2.98$, 2.87).
2) Rotate the shape 123° around the point (0,0)..

3) Rotate the shape 246° around the point $(0,0)$..

Rotate each shape. Answer as the new coordinates.

$\theta=$ Angle of Rotation

Rotation Formula

$\mathrm{x} 1=\mathrm{x} \times \cos (\theta)-\mathrm{y} \times \sin (\theta)$
$y 1=x \times \sin (\theta)+y x \cos (\theta)$
In the example to the right the shape is at coordinates $(1,4)$.
Lets find the coordinates if we rotated the shape 60°.

1. $\mathrm{x} 1=1 \times \cos (60)-4 \times \sin (60)$
$y 1=1 \times \sin (60)+4 \times \cos (60)$

2. $\mathrm{x} 1=1 \times 0.5-4 \times 0.87$
$y 1=1 \times 0.87+4 \times 0.5$
3. $\mathrm{x} 1=0.5-3.48$
$\mathrm{y} 1=0.87+2$
4. $x 1=-2.98$
$\mathrm{y} 1=2.87$
5. Looking at shape, we can see that rotated 60° it is at $(-2.98$, 2.87).
6.

(3.8,6.2)
2. \qquad
3.
(-6.8,-5.2)
4. \qquad

1) Rotate the shape 317° around the point $(0,0)$..

2) Rotate the shape -253° around the point $(0,0)$..

3) Rotate the shape 123° around the point (0,0)..

4) Rotate the shape 246° around the point $(0,0)$..

